
TECHNICAL NOTE 

Solution of the autoclave d harge 
problem by the Lax-Wendroff method 
M. D. Warren* 
This paper considers the problem of calculating the discharge arising from the collapse of 
the safety disc in an autoclave system. The autoclave is approximated by an equivalent 
system consisting of a high-pressure reservoir and a discharge pipe with a diaphragm and 
nozzle. Solutions to the problem are calculated using the Lax-Wendroff method. These 
solutions are compared with ones obtained from analytical methods and with a solution 
obtained by practical measurement. 
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I n t r o d u c t i o n  

In many processing plants, chemical reactions are carried out in 
closed vessels in which the pressure increases as the reaction 
continues. If the chemical reaction goes out of control, 
unacceptably high levels of pressure may arise, and to avoid this 
situation the vessels are connected to a discharge pipe fitted 
internally with a safety disc. On collapse of the safety disc, a 
rapid discharge from the autoclave takes place through the 
discharge pipe. At the end of the discharge pipe, there is usually 
a deflector plate. The effect of the deflector plate is to contain the 
discharge to some extent, but this placement will have the 
undesirable effect, in general, of producing a reflected shock 
wave. The estimation of the transients during the discharge is 
thus of great interest. 

It is of both theoretical and practical interest to construct a 
mathematical model of this system that will predict these 
transients and so serve as a useful tool in the design of an 
autoclave system. Here the model of an autoclave system is 
assumed to consist of a reservoir maintained at constant 
pressure and a discharge pipe with diaphragm and nozzle as 
shown in Figure 1. The diaphragm corresponds to the 
autoclave's safety disc, which collapses when a predetermined 
safety pressure is exceeded. The deflector plate at the end of the 
discharge pipe may be approximated by an equivalent nozzle. 
The calculation of the transients is achieved here by the Lax- 
Wendroff method I because of its simplicity, accuracy, speed, 
and robustness. 

Other accounts and solutions of the problem may be found in 
Woods, 2 Woods and Thornton, z Woods and Owen, 4 and 
Baltas. 5 In this paper, the Lax-Wendroff method is used to 
calculate the numerical solution from the data supplied by 
Baltas. This numerical solution is then compared with the 
solution Baltas obtained by practical measurement. 

For  convenience, the data taken from the Baltas paper is 
summarized here. 

Length of discharge pipe 9.212 m 
Diaphragm position from the reservoir 4.606 m 
Transducer position from the reservoir 5.923 m 
Nozzle to pipe area ratio (~k) 0.A.A.A. A, 
The atmospheric pressure was measured as pl = 1.02187 bar, 

and the high/low pressure ratio was taken as P4JPl = 7.0722. 
The temperature of the system, initially, was measured as 

T = 291.45 °K. 
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From these values, the following initial variable values for the 
autoclave may be calculated to four significant figures, using the 
notation shown in Figure 2: 

Pl = 1.222 Px = 0.1022.106 al = 342.2 

P4 = 8.640 P4 = 0.7227.106 a4 .= 342.2 

G o v e r n i n g  e q u a t i o n s  

Conservation form 

During the discharge, the flow values are governed by the 
continuity, momentum, and energy equations of unsteady gas 
flow. These equations may be written in the conservation form: 

ov+oo(v)=e 
Ot c~x (1) 
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Figure 1 (a) Autoclave representation; (b) computational grid for 
pipe of length x=(J-1 )h 
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Figure 2 Position-diagram tar shock-tube problem 

where 

v=[! G(V) = p + m2/p B = -- p~b 

[_(e + p)m/p pq 

and the wall friction term is defined by 

ep 4 f  u (2) 

The value of the wall friction term, unclear in transient flow 
involving shocklike discontinuities, was taken as zero in all the 
calculations in this paper. The heat transfer rate term, q, was 
also taken as zero. 

Quasilinear form 

The quasilinear form of these equations ih 

dW 0W 
~t + A -~x =C 

where 

P 1 

W =  A= u C= - 1 - q +  udp 

7P 

(3) 

The characteristics, and characteristic relations along the 
characteristics, can be obtained from these quasilinear 
equations and written in the following form: 6 

(4) 
7 - 1  y - 1  a 

¢ t a ± - - d u = ~ d t  +- -aa  a 
2 z a a 

where 

on the C tl), C (2) characteristics, dx/dt=u + a, and 

1 
aa,= ~ ~a2 [J dt 

where 

fl=(7-1)p(q+udp) 

on the C characteristic, dx/dt=u. 

(5) 

Analyt ica l  solut ion 

This section obtains the theoretical solutions for the initial and 
final flow values of the autoclave system. 

Incident wave solution 

A shock tube is considered with the gas initially in the state 

u = 0  P=Pz P=Pl 

for x>  0, on the low-pressure side of the diaphragm, and 

u=O p=p4>pl P=P4 

for x <  0, on the high-pressure side of the diaphragm. The 
governing equations with these initial values form a Riemann 
initial value problem. For Riemann problems, it is possible to 
obtain an exact analytical solution for the incident wave. The 
structure of the solution may be illustrated in the position- 
diagram of Figure 2, which shows that a shock and interface 
wave travel toward the nozzle, and a rarefaction wave travels 
toward the reservoir. Once reflections from the pipe ends have 
occurred, exact analytical solutions are not available, in general, 
until the arrival of the steady discharge state. 

A convenient method for obtaining this solution is outlined in 
Whitham. 7 The procedure is to obtain a nonlinear equation in 
terms of the shock strength parameter, z, defined by 
z= (P2-Pt)/Pl, using the notation of Figure 2. The problem 
may be viewed as the combination of two piston problems, with 
the interface acting effectively as a piston. From a manipulation 
of the Rankine-Hugoniot equations holding across the shock 
wave in front of the interface, and the characteristic equations 
governing the flow behind the interface, the following nonlinear 
equation may be obtained: 

z 2 aa{  _ ~ P l ( l  "]7-1/27) 
. r + l  "¢/2=(r- i )~  1 7 1 - t - - - ~  ~ LP, +z)J  ~ (6) 

This equation can be solved for the shock parameter, z, by a 
numerical method, for example, the method of bisection. Once 
the magnitude of this shock strength parameter has been 

N o t a t i o n  

a Speed of sound 
a= Speed of sound after isentropic change of state to 

reference pressure Pref 
D Pipe diameter 
e Total energy per unit volume 
f Friction factor 
m Momentum per unit volume 
p Pressure 

q Heat transfer rate per unit mass 
t Time 
T Temperature 
u Particle velocity 
x Distance 

Ratio of specific heats (y = 1.4) 
p Density 

Nozzle to pipe area ratio 

Subscript/superscript 
U~ - U(jh, nk) =- U(x, t) 
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obtained, numerical values may be obtained for all the other 
unknowns. 

Applying this method to the data obtained from Baltas gives 
the following solution to the problem: 

Pl = 1.222 ul = 0.000 Pl =0.1022.106 ai = 342.2 

P2 = 2.282 /~2 = 238.8 P2 = 0.2523.106 a 2 = 393.5 

Pa = 4.074 u 3 = 238.8 Pa = 0.2523.106 a3 = 294.4 

P4 = 8.640 u# = 0.000 p# = 0.7227.106 a 4 = 342.2 

in the notation of Figure 2. The shock travels with a speed 
U=514.3 m/s, and the analytical solution at t=0.0069 s, just 
before the shock impinges on the nozzle, is shown in Figure 3. 

Steady .state solution 

Once the transients have died away and the system is in a steady 
discharge state, a solution may be obtained from the following 
steady state equations: 

Reservoir to pipe 

Energy: a 2 + ~ u  2=a  2 (7) 

Entropy: p / p r = p o / P r o  (8) 

where the subscript 0 represents a reservoir value. 

Pipe to nozzle 

Continuity: p u = ~ k p e a  e (9) 

Energy (sonic flow): a 2 ' 7 - 1  2 _ 7 + 1  a2 (10) 
+ 2 u -  2 

Entropy: po/P~o=pf fp~  (11) 

where the subscript e represents a nozzle outlet value. 
For the reservoir values po=0.7227.106 and a0= 342.2, the 

following steady state solutions were obtained: 

Uo = 0.000 Po =0-7227.106 Po = 8.640 

u =91.21 p =0.6874.106 p =8.336 

u~ =312.4 Pe =0'3818"106 p~ =5.477 

a 0 = 342.2 

a = 339.8 

a~ =312.4 

Numerical method of solution 

Lax-Wendroff method 

The autoclave system is subdivided by the nodal points 
j=0 ,  1, 2 . . . . .  J, as shown in Figure 1. The Lax-Wendroff 
method, in its two-step form s 

+1'2 1 1 At . . At 
U+t~  = ~ ( U + t  + U ) - ~ x x  (G j+ , -  G~)+-~- (B~1+1 +/~]) (12) 

A t  ((2n+1/2 r ,n+l /2x__At  /Dn+t12 L l ~ + t / 2 1  (13) 
U + '  = U - ~  , ~J+  ~/~ - ' - ' J - 1 ~ '  ~-T ~"J+ ' :~ ~ ~ J - ' : ~ '  

was used to calculate values at the nodes j = 1,2 . . . . .  J - 2  of 
Figure 1. 

Numerical approximation at the boundary 

The calculation of the values at the O, J -  1, and J nodes of 
Figure 1 requires a numerical method that can be used in 
conjunction with the quasi-steady assumptions at the pipe- 
nozzle and pipe-reservoir boundaries. 

At the pipe-nozzle boundary, a hybrid method of 
approximation was used. This method, along with its accuracy 
in the calculation of a reflected shock, has been fully discussed 
elsewhere.9 

At the reservoir-pipe boundary, a characteristic approxi- 
mation was used in conjunction with the quasi-steady state 
assumption. For subsonic flow from the reservoir to the pipe, 
two quasi-steady state assumptions are required. These, in the 
notation of Figure 1, take the form 

Y--I U2-- 2 2 Energy: - - ~  e + a e = a  o (14) 

Entropy: (aa)e = (a=)0 (15) 

where the 0 subscript refers to the reservoir values. 
Applying the method of Courant e t  al .  t °  to the C (2) 

characteristic in Equation 4 leads to 

x e - XQ = (uA --  a A ) K  (16) 

and the characteristic relation 

7 - 1  7 - 1  ,~ 
a R -- - - ~  tt R = - - ~  t ~ (17) 

where 

2 2 aA 
Q = ~ ] -  a e -  uQ + 7 - 1 (a=)A ((a°)R - (ao) e) + ~AK 

Following Rudinger, tl it is now possible to solve Equations 
14 and 17 for the sound speed, ae, giving 

7 - 1 [ - _  / y + l  2 7-1,,.,2"~ 1/2-] ) ] (18) 

where it has been assumed that the flow is positive, uR > O. Once 
a value for the sound speed, ae, has been found, values for the 
pressure, Pe, and density, Pe, may be obtained from the 
isentropic relationships. 

Numerical computations 

The Lax-Wendroff method with the hybrid and characteristic 
methods of approximation at the pipe boundaries was applied 
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to the data obtained from Baltas. The computations were 
performed with 42 nodes, giving a mesh length Ax = 9.212/40 = 
0.2303m. The increment, At, was obtained from 
max(lu I + a) At /Ax  = 0.9 to satisfy the Courant-Friedrichs-Lewy 
stability criterion, s 

The computed values at various times are shown in Figure 3. 
The results at time t = 0.0069 s demonstrate the accuracy of the 
Lax-Wendroff method, when compared with the exact solution, 
for the incident wave. The computations show that the incident 
shock wave impinges on the nozzle at an approximate time 
t = 0.009 s and produces a reflected shock wave of approximate 
magnitude 9.0 bar. As time increases, a steady discharge state is 
eventually reached through the interplay of waves between 
reservoir and nozzle ends. For t>~0.8, the Lax-Wendroff 
method gave steady state pipe values of 

u=91.2 p=0.687.106 p=8.34 a=339.8 

and steady-state nozzle values of 

ue=312.4 pe=0.3818.106 pe=5.478 ae=312.4 

showing agreement to three significant figures with the 
analytical steady state values previously obtained. 

Theoretical and practical comparisons 

This section compares the solution to the autoclave problem 
given by the Lax-Wendroff method with the one obtained by 
Baltas from practical measurement. 

In the practical measurements, a transient pressure 
measuring transducer was placed between the diaphragm and 
the outlet nozzle at a distance of 1.317m from the diaphragm. 
The pressure ratio, p/p~, where Pl is the atmospheric pressure, 
against time measurements at this point are shown in Figure 4, 
along with the results obtained by the Lax-Wendroff method. 

The results show good agreement in the time interval 
0~< t~< 0.01, during which time the incident shock wave passes 
the transducer. The results are also in reasonable agreement in 

the time interval 0.01 ~< t~< 0.05, the increase in pressure arising 
here from the reflection of the shock and interface waves. For 
t>0.05, the solutions show some differences, and some 
explanation is required. In the practical measurement, the 
pressure ratio reaches a maximum of 5.0 and then decreases. 
This may be explained by the fall in pressure at the reservoir, 
which cannot be maintained at the initial high pressure value for 
very long in a practical experiment. The Lax-Wendroff method 
for t> 0.05 shows a rise in the pressure ratio to a maximum of 
9.2, followed by a gradual tailing off to the steady state pressure 
ratio of 6.7 for t~>0.8. 

In summary, though these results show good agreement 
initially, significant differences do appear in the solutions at later 
times. These differences arise from the assumption of constant 
pressure at the reservoir used in the mathematical model. An 
improved model allowing for the decrease in pressure at the 
reservoir should produce better agreement, and work is 
continuing along these lines. 

Conclusion 

This paper has obtained a solution to the autoclave problem 
through the application of the Lax-Wendroff method of 
solution. The numerical solution obtained from the Lax- 
Wendroff method has been compared with exact analytical 
solutions, for the initial and final steady state values, and good 
agreement has been obtained between the two methods. The 
solutions given by the Lax-Wendroff method have also shown 
reasonable agreement with those obtained from practical 
measurement. 
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